Dou and plural universal quantification in Mandarin Chinese

Introduction. Mandarin Chinese uses a combination of $m e i$ and $d o u$ to express universal quantification. In most cases, dou is obligatory as in (1).

Like every, mei can be used with numerals larger than one, in which case $d o u$ is no longer always obligatory. Suppose there are 4 students in the context for (2) and (3)
With dou, as in (2), 'mei- n-NP dou VP' quantifies over every possible n-sized plurality. As $n=2,\binom{4}{2}=\frac{4 \cdot 3}{2 \cdot 1}=6$ pluralities are quantified over. I call this the exhaustive reading.
Without dou, as in (3), 'mei- n-NP VP' is only licensed when VP contains an indefinite numeral. A partition of the domain into n-sized pluralities is quantified over; there are $\frac{4}{2}=2$ pluralities. I call this the partition reading.
(1) mei yi-ge xuesheng *(dou) hui shuo yingyu. every 1-cl student dou can speak English 'Every student can speak English.'
(2) mei liang-ge xuesheng *(dou) xie-le yi-pian lunwen. every 2 -cl student dou wrote $1-\mathrm{CL}$ paper 'Every possible pair of students wrote a paper together.' $\Rightarrow 6$ papers written
(3) mei liang-ge xuesheng (*dou) xie-le yi-pian lunwen. every 2-cl student dou wrote 1-CL paper 'Every pair in a partition of the students into pairs wrote a paper together.'
$\Rightarrow 2$ papers written What is the semantic contribution of dou? Why is it obligatory in exhaustive but impossible in partition?
Proposal. I argue that the account of $d o u$ as equivalent to English even in Liu (2021) explains the alternation between exhaustive and partition readings with and without dou if we accommodate the general ambiguity of plural universals between exhaustive and partition readings through domain variables and adopt a revised understanding of domain alternatives that even/dou quantifies over.
Liu (2021) on mei-dou co-occurrence. Liu (2021) treats dou just like English even:
(4) $\llbracket \mathrm{dou}_{C} S \rrbracket$ is defined iff $\forall q \in\left\{\llbracket S^{\prime} \rrbracket \mid S^{\prime} \in \operatorname{ALt}(S)\right\} \cap C . \llbracket S \rrbracket \neq q \rightarrow \llbracket S \rrbracket<q$. If defined, \llbracket dou $S \rrbracket=\llbracket S \rrbracket$.

It presupposes that the prejacent is the strongest w.r.t an ordering on propositions ($<$) among its alternatives and asserts the prejacent if the presupposition is satisfied. Notice that although dou is clause-medial, it moves covertly to a high position to take the entire clause as its argument, enabling the definition in (4).
$M e i$ is just a regular universal quantifier as in (5). $\|$ (5) $\llbracket \mathrm{mei}_{D} \rrbracket=\lambda P . \lambda Q . \forall x . x \in D \wedge P(x) \rightarrow Q(x)$
The associate of $d o u$ is the domain variable D on $m e i$, supposedly students $\{\mathbf{a}, \mathbf{b}, \mathbf{c}\}$ as in (6); the alternatives are the domain alternatives (7), which in this case are all necessarily subdomains:
(6) mei_{D} yi-ge xuesheng $*$ (dou) lai-le. every 1 -cl student dou came
(7) $\forall x \in\{\mathbf{a}\} . \mathrm{c}(x), \forall x \in\{\mathbf{b}\} . \mathrm{c}(x), \forall x \in\{\mathbf{c}\} . \mathrm{c}(x)$, $\forall x \in\{\mathbf{a}, \mathbf{b}\} . \mathrm{c}(x), \forall x \in\{\mathbf{b}, \mathbf{c}\} . \mathrm{c}(x), \forall x \in\{\mathbf{c}, \mathbf{a}\} . \mathrm{c}(x)$, $\forall x \in\{\mathbf{a}, \mathbf{b}, \mathbf{c}\} . \operatorname{came}(x)$ $\forall x \in\{\mathbf{a}, \mathbf{b}, \mathbf{c}\} . \mathrm{c}(x)$

The alternatives are all entailed by the prejacent, which is therefore the strongest w.r.t entailment. The presupposition is satisfied, and the meaning of (6) is just 'every student came.' Then, the following principle (8) derives the obligatoriness of dou for (6), akin to the obligatoriness of also and too in certain contexts:
(8) Maximize Presupposition (MP): Make your contribution presuppose as much as possible (Heim, 1991). Since the presupposition of dou in (7) is met, its use is obligatory with 'mei-1-NP,' as there are no particles with stronger presuppositions.
Explaining the alternation with and without dou. Liu (2021) can be extended with two observations to account for the alternation between exhaustive and partition readings with and without dou.
First, plural universal quantifiers are inherently ambiguous between the exhaustive and partition readings.
This is seen in the English examples with every; (9) and (10) are paired with their most salient interpretations:
(9) Every two students shook hands.
\Rightarrow all possible pairs, $\binom{n}{2}$ handshaking events
(10) Every two students wrote a paper together.
\Rightarrow pairs in a partition, $\frac{n}{2}$ papers written

This ambiguity can be captured through the domain variables on the universal quantifiers as in (11), (12):
(11) Exhaustive reading
$D_{\text {exh }}$ is the closure under \oplus of the set of contextu-
ally salient atoms in $\llbracket \mathrm{NP} \rrbracket$ (Crnič, 2022).
(12) Partition reading
$D_{\text {part }}$ is different from $D_{\text {exh }}$ in that the n-sized pluralities form a partition of $\oplus D_{\text {exh }}$.

Second, the restriction that domain alternatives are only subdomain alternatives (implicit in Liu 2021, Crnič 2022) should be relaxed. It is just that when the domain is the closure under \oplus of the contextually salient atoms, no larger domain can possibly be constructed. In principle, given a domain D, as long as $\bigoplus D^{\prime} \sqsubseteq \bigoplus D$ (so D^{\prime} does not involve atoms not involved in D), D^{\prime} should be a domain alternative of D even if $D^{\prime} \nsubseteq D$. This formulation makes $D_{\text {exh }}$ and $D_{\text {part }}$ each other's alternatives since they involve the same atoms.
Then, the obligatory presence and obligatory absence of $d o u$ with the exhaustive and partition readings respectively are easily derivable: dou's presupposition is met in the former but not in the latter. I assume (13)-(16) for mei, n-cl NP, and the domains involved:
(13) $\llbracket \mathrm{mei}_{D} \rrbracket=\lambda P:|D \cap P| \geq 2 . \lambda Q . \forall x \in D \cap P . Q(x)$
(14) $\llbracket n$-cl NP $\rrbracket=\lambda X .|X|=n \wedge X \in * \llbracket \mathrm{NP} \rrbracket$
(15) Domain of 'mei-n-NP' with dou: $D_{\text {exh }}$
(16) Domain of 'mei-n-NP' without dou: $D_{\text {part }}$

Then, we can look at (17) and (18); suppose the atomic students in the context are $\mathbf{a}, \mathbf{b}, \mathbf{c}, \mathbf{d}$,
(17) $\operatorname{mei}_{D_{\text {exh }}} 2$ student $*$ (dou) wrote a paper together.
$\forall X \in D_{\text {exh }} \cap \llbracket$ two students $\rrbracket=\{\mathbf{a} \oplus \mathbf{b}, \mathbf{a} \oplus \mathbf{c}, \mathbf{a} \oplus \mathbf{d}, \mathbf{b} \oplus \mathbf{c}, \mathbf{b} \oplus \mathbf{d}, \mathbf{c} \oplus \mathbf{d}\}$. write.paper $(X) \quad \Rightarrow 6$ papers
(18) $\operatorname{mei}_{D_{\text {part }}} 2$ student (*dou) wrote a paper together.
$\forall X \in D_{\text {part }} \cap \llbracket$ two students $\rrbracket=\{\mathbf{a} \oplus \mathbf{b}, \mathbf{c} \oplus \mathbf{d}\}$. write.paper $(X) \quad \Rightarrow 2$ papers
When $n \geq 2$, as $|D \cap P| \geq 2$, we have $D_{\text {part }} \subset D_{\text {exh }}$. In (17), $D_{\text {exh }}$ is the maximal domain, so the prejacent entails all its alternatives; dou is obligatory by MP. In (18), $D_{\text {part }}$ is not maximal, so the prejacent doesn't entail all the alternatives (e.g., the prejacent of (17)) and is therefore not the strongest among the alternatives; the presupposition of $d o u$ is not met and its presence is impossible.
When $n=1, D_{\text {exh }}=D_{\text {part }}$; as these domains are equally maximal, dou is generally always obligatory, which is just the result with singular universal quantification seen in Liu (2021).
Extension to plural free choice (FC) indefinites. The present approach predicts that when an element requiring that the prejacent be the strongest among the alternatives (dou, even) is present, the sentence, if expressing a universal proposition, should have the maximal domain. Following Lahiri (1998); Crnič (2017, 2022), 'NPIs are weak elements that are associates of even,' the prediction becomes that when an NPI indefinite under a universal FC reading involves a numeral $n \geq 2$, it is always the exhaustive rather than the partition reading. This prediction is borne out. Suppose the domain variable on any D is $D_{\text {part }}$ in (19).
(19) $\emptyset_{\text {even }}\left[\mathrm{exh}_{R}\right.$ any $_{D}$ two students can write a paper together].

By Innocent Inclusion in Bar-Lev and Fox (2020), (19) can have the meaning that all and only the pluralities in a partition of contextually salient students into pairs can co-author a paper (partition). However, (19) clearly doesn't have this meaning; rather, it must mean that all possible pairs of students can co-author a paper (exhaustive). This is because $\phi_{\text {even }}$'s presupposition isn't satisfied when $D=D_{\text {part }}$ in (19) since replacing $D_{\text {part }}$ with $D_{\text {exh }}$ will result in a stronger alternative. D can only be $D_{\text {exh }}$ in the presence of $\phi_{\text {even }}$. The same is true in Chinese; NPI renhe \mid (20) renhe liang-ge xuesheng *(dou) keyi xie yi-pian lunwen. 'any' also forces the presence of dou which forces the use of $D_{\text {exh }}$ in (20). any 2-CL student DOU can write 1-CL paper 'Any two students can write a paper (together).' (20) can only mean that all possible pairs of students can co-author a paper, not just pairs in a partition. This connection between plural universals and plural FC indefinites cannot be captured by analyses of dou without an even-like semantics, e.g. Sun (2018), who considers dou a plain universal quantifier and posits that there is a covert dou imposing the partition requirement and used in the partition reading instead of overt dou.
Conclusion. The account of mei-dou occurrence in Liu (2021), as long as we relax the requirement on domain alternatives to accommodate the ambiguity of plural universal quantification between exhaustive and partition readings, can account for the alternation with and without dou between the exhaustive and partition readings of 'mei- n-NP' constructions. The account also extends to universal FC plural NPIs, where the obligatory presence of even or dou forces an exhaustive reading.

- Bar-Lev, Moshe E., and Danny Fox. 2020. Free choice, simplification, and Innocent Inclusion. Natural Language Semantics 28:175-223. • Crnič, Luka. 2017. Free Choice under Ellipsis. The Linguistic Review 34:249-294. - Crnič, Luka. 2022. Number in NPI licensing. Natural Language Semantics 30:1-46. • Heim, Irene. 1991. Artikel und definitheit. In Semantik: Ein internationales Handbuch der zeitgenssischen Forschung, 487-535. Berlin: de Gruyter. - Lahiri, Utpal. 1998. Focus and Negative Polarity in Hindi. Natural Language Semantics $6: 57-123$. \cdot Liu, Mingming. Handbuch der zeitgenssischen Forschung, $487-53$. Berlin: de Gruyter. - Lahiri, Upal. 1st. Focus and Negative Polarity in Hindi. Natural Language Semantics $6: 5-123$. Liu, Mingming.

2021. A pragmatic explanation of the mei-dou co-occurrence in Mandarin. Journal of East Asian Linguistics 30:277-316. - Sun, Yenan. 2018. Two kinds of quantificational domains: Mandarin mei with or without dou. In Proceedings of the 53rd Annual Meeting of the Chicago Linguistic Society.
