Ilitite
 Massachusetts Dou and plural universal quantification in Mandarin Chinese

 Institute of

 Institute of
 Technology
 Haoming Li
 Massachusetts Institute of Technology

Introduction

Mandarin Chinese uses a combination of determiner-like mei and adverb-like dou to express universal quantification; in most cases, dou is obligatory:
(1) mei yi-ge xuesheng *(dou) hui shuo yingyu.

MEI 1-CL student DOU can speak English 'Every student can speak English'

- Like every, mei can be used with numerals larger than one

Then, dou is no longer always required; there is a semantic alternation with the presence or absence of dou between the exhaustive and partition readings, introduced in Sun (2018)
If there are 4 students in the context, Exhaustive reading
With dou, 'mei-n-NP dou VP' quantifies over every possible n-sized plurality. 'mei-2-NP' quantifies over ($\frac{4}{2}$) $=\frac{4 \cdot 3}{2 \cdot 1}=6$ pluralities.

Partition reading
Without dou, 'mei-n-NP VP' is only licensed when the VP contains a numeral. A partition of the domain into n-sized pluralities is quantified over. mei-2-NP' quantifies over $\frac{4}{2}=2$ pluralities.
(2) mei liang-ge xuesheng *(dou) xie-le yi-pian lunwen. $\quad \Rightarrow 6$ papers MEI 2-CL student DOU write-PFV 1-CL paper 'Every possible pair of students co-wrote a paper.'
(3) mei liang-ge xuesheng (*dou) xie-le yi-pian lunwen
‘Every pair in a partition of the students into pairs co-wrote a papers What is the sema alternation?

An even analysis of dou: Liu (2021)

- Liu (2021) equates dou with English even; it contributes this exact meaning with a singular DP associate (4):
(4) Zh

Zhangsan dou lai-le. 'Even Zhangsan come-PFy
(5) [douc S I is dofine

$$
\begin{aligned}
& \llbracket d_{0} S \rrbracket \text { is defined only if } \\
& \text { If defined, } \llbracket \text { dou } S \rrbracket=\llbracket S \rrbracket \text {. }
\end{aligned}
$$

It is a propositional filter that presupposes the prejacent is the strongest w.rt It is a propositional fiter that presupposes the prejacent is the
an ordering (likelihood or entailment) among its alternatives.

- Mei is a regular universal quantifier: $\llbracket \operatorname{mei}_{D} \rrbracket=\lambda P_{e t} \cdot \lambda Q_{e t} \cdot \forall x_{e} \cdot x \in D \wedge P(x) \rightarrow Q(x)$ - Mei is a regular universal quantifier: $\left[\right.$ me $i_{D}=\lambda P_{e t} \cdot \lambda Q_{e t} \cdot \forall x_{e} \cdot x \in D \wedge P(x) \rightarrow Q(x)$
Domain alternatives of (6) The associate of dou in such sentences is the
domain variable on mei. The alternatives generated are the subdomain alternatives. Suppose a, b, c are students in the context,
(6) mei i_{D} yi-ge xuesheng *(dou) lai-le.

MEI 1-CL student , DOU come-PFV 'Every student came.'
$\forall x . x \in\{a, b, c\} \rightarrow \operatorname{CAME}(x)$ $\forall x . x \in\{a\} \rightarrow \operatorname{CAME}(x)$ $\forall x . x \in\{b\} \rightarrow \operatorname{CAME}(x)$
$\forall x . x \in\{c\} \rightarrow \operatorname{CAME}(x)$ $\forall x . x \in\{a, b\} \rightarrow$ CAME (x) $\forall x . x \in\{b, c\} \rightarrow \operatorname{CAME}(x)$ $\forall x . x \in\{c, a\} \rightarrow \operatorname{CAME}(x)$
$\forall x . x \in\{a, b, c\} \rightarrow \operatorname{CAME}(x)$
The alternatives are all entailed by the prejacent.
Dou's presupposition is satisfied, and (6) just means 'every student came. Maximize Presupposition derives the obligatoriness of dou for (5).
(7) Maximize Presupposition (MP)

Make your contribution presuppose as much as possible (Heim 1991).

- Since the presupposition of dou, i.e., that the prejacent is the strongest, is met,
its use is obligatory since one has the duty to presuppose maximally.
- The hope is for this presupposition of dou to account for the alternation.
- Two supplements to Liu (2021) are required.

Supplement 1: Inherent ambiguity of universals

- First, plural universal quantifiers are inherently ambiguous between the exhaustive and partition readings.
- This is seen in the English examples with every; (8) and (9) are paired with their most salient interpretations:

Every two students shook hands.
\Rightarrow all possible pairs
Every two students co-wrote a paper. $\Rightarrow\binom{n}{2}$ handshaking event
\Rightarrow pairs in a partition
$\Rightarrow \frac{1}{2}$ papers writen
This ambiguity can be captured through the domain variables on the universal quantifiers as in (8), (9):

Exhaustive reading
$D_{\text {exh }}$ is the closure under \oplus of the set
of contextually salient of contextually salient atoms in $\llbracket \mathrm{NP} \rrbracket$ (Crnič 2022).

Partition reading
$D_{\text {part }}$ is different from $D_{\text {exh }}$ in that the n-sized pluralities form a partition of $\oplus D_{\text {exh }}$.

Supplement 2: Sub-domains redefined

Second, the restriction that domain alternatives involve only subdomain (implicit in Liu 2021) should be relaxed.
It is just that when the domain is the closure under \oplus of the contextually salient atoms, no larger domain can be constructed. In principle,
Domain alternatives
Given a domain D, if $\oplus D^{\prime} \sqsubseteq \oplus D$ (so D^{\prime} does not involve atoms not involved in D), D^{\prime} should be a domain alternative of D even if $D^{\prime} \nsubseteq D$.

$$
\text { Old: } D^{\prime} \subseteq D
$$

New: $\oplus D^{\prime} \subseteq \oplus D$

- Now, $D_{\text {exh }}$ and $D_{\text {part }}$ are each other's alternatives since they involve the same atoms, $\oplus D_{\text {exh }}=\oplus D_{\text {part }}$.

Explaining the alternation
Then, the alternation is explained: dou's presupposition is met in the exhaustive but not in the partition.
I assume (8)-(11) for mei, n-CL NP, and the domains involved
(8) $\llbracket \mathrm{mei}_{D} \rrbracket=\lambda P:|D \cap P| \geq 2 . \lambda Q . \forall x \in D \cap P . Q(x)$
(9) $\llbracket n-C L N P \rrbracket=\lambda X .|X|=n \wedge X \in * \llbracket N P]$
(10) Domain of 'mei-n-NP' with dou: D
(11) Domain of 'mei-n-NP' without dou: $D_{\text {pa }}$

Then, suppose the atomic students in the context are a, b, c, d
(12) $\mathrm{mei}_{D_{\text {exh }}} 2$ student $*$ (dou) co-wrote a paper. $\forall X \in D_{\text {part }} \cap[2$ student $\rrbracket=\{a \oplus b, c \oplus d\}$. WRITE. $\operatorname{PAPER}(X)$

- When $n \geq 2$, as $|D \cap P| \geq 2$, we have $D_{\text {part }} \subset D_{\text {exh }}$.
- In (12), $D_{\text {exh }}$ is the maximal domain, so the prejacent entails all the alternatives; the presupposition of dou is met; and dou is obligatory by MP.
- In (13), $D_{\text {part }}$ is not maximal, so the prejacent doesn't entail all the alternatives; the presupposition of dou is not met; and dou's presence is impossible When $n=1, D_{\text {exh }}=D_{\text {part }}$; as these domains are equally maximal, dou is obligatory. This is just the scenario of Liu (2021).

Extension to plural free choice (FC) indefinites

- The present approach predicts that when an element requiring that the prejacent be the strongest among the alternatives (dou, even) associates with the domain variable of a sentence expressing a universal proposition, should have the maximal domain.
- Then, the prediction is that when an NPI indefinite under a universal FC reading involves a numeral $n \geq 2$, it is always the exhaustive rather than the partition reading, if we adopt the following:
Lahiri (1998) and Crnič $(2017,2022)$
NPIs are weak elements that are associates of even.
- Suppose the domain variable on any D is $D_{\text {part }}$ in (14).
(14) $\varnothing_{\text {even }}\left[E x h^{\mid E+\|}\right.$ any y_{D} two students can co-write a paper].
- By Innocent Inclusion (Bar-Lev \& Fox 2020), (14) should mean that every pair in a partition of salient students into pairs can co-write a paper (partition).

The algorithm of Innocent Inclusion is agnostic w.r.t. whether the pluralities are exhaustive or form a partition.

- However, (14) clearly doesn't have this meaning; rather, it must mean that all possible pairs of students can co-write a paper (exhaustive).
- This is because $\varnothing_{\text {even }}$'s presupposition isn't satisfied when $D=D_{\text {part }}$ in (14) since replacing $D_{\text {part }}$ with $D_{\text {exh }}$ will result in a stronger alternative.
D can only be $D_{\text {exh }}$ in the presence of $\varnothing_{\text {even }}$
- The same is true in Chinese; NPI renhe 'any' also forces the presence of dou which forces the use of $D_{\text {exh }}$ in (15).
(15) renhe ${ }_{D=D_{\text {exh }}}$ liang-ge xuesheng *(dou) keyi xie yi-pian lunwen any
$\begin{array}{ll}\text { any } & 2 \text {-cL } \\ \text { Any two stude }\end{array}$
a paper (together):
(15) only means that all possible pairs of students can co-write a paper, not just pairs in a partition.
captured by analyses of dou without an even-like semantics, e. Sun (2018) who considers dou a plain universal quantifier and posits that there is a covert dou imposing the partition requirement and used in the partition reading instead of overt dou.

Conclusion

- 'Mei-n-NP (dou) VP' alternates between exhaustive and partition readings when $n \geq 2$, depending on whether dou is present.
The account of mei-dou occurrence in Liu (2021) can account for this alternation if we entertain the following:

Plural universal quantification is inherently ambiguous between exhaustive and partition readings, captured through domain variables.
Domain alternatives are not necessarily subdomain alternatives; the requirement $D^{\prime} \subseteq D$ is replaced by $\oplus D^{\prime} \subseteq \oplus D$.

- The account also extends to universal FC plural NPIs, where the obligatory presence of even or dou forces an exhaustive reading.

