
Iterated Rationality Models and Conjunctive Readings of Disjunctions 
Background. Scalar Implicatures (SIs), such as the inference from ‘some’ to ‘some but not all’ in (1), have 
been extensively studied in recent decades, both experimentally and theoretically. 

(1) John did some of the homework ⇝ John did some but not all of the homework 
 In recent work, Fox & Katzir (2021; henceforth F&K21) present an argument in favor of a grammatical 
approach to SIs over a pragmatic approach based on conjunctive readings of disjunctive sentences. Our 
work presents a novel perspective on the initial (naive) speaker in this approach, that challenges their 
argument, thus contributing toward its evaluation as theoretical framework that account for SIs. 
Conjunctive Readings of Disjunctions (CRDs). Disjunction gives rise to a conjunctive interpretation in 
multiple configurations where the alternatives are not closed under conjunction, such as Warlpiri 
Connectives (Bowler 2014) and Free Choice inferences (Kamp 1974) like (2).  

(2) John is allowed to eat an apple or a banana. 
a. ⇝ John is allowed to eat an apple b. ⇝ John is allowed to eat a banana 

Such inferences have been argued to be SIs (Kratzer & Shimoyama 2002, Alonso-Ovalle 2005) and have 
served as a central criterion for comparing two main approaches: (a) the pragmatic approach, according to 
which SIs are a pragmatic phenomenon that arises at the speech act level, driven by conversational 
principles (Horn 1972, Grice 1989, a.o); (b) the grammatical approach, according to which SIs are logical 
entailments derived compositionally within grammar, usually by a covert exhaustivity operator (Fox 2007, 
Chierchia et al. 2012, Bar-Lev and Fox 2017, a.o). While accounted for under the grammatical approach, 
CRDs were a major problem for early pragmatic theories, and as such were a central argument for the 
former in the literature (Fox 2007). However, a prominent body of work on Iterated Rationality Models 
(IRMs; following F&K21) changed this view, and offered a pragmatic derivation of these inferences 
(Franke 2009, Van Rooij 2010). Iterated Rationality Models (IRMs). The IRM approach bundles a 
variety of models that incorporate iterative process of pragmatic and probabilistic reasoning, including the 
Rational Speech Act model (Frank & Goodman 2012), Iterated Best Response (Franke 2009) a.o. Unlike 
previous pragmatic theories, some IRMs derive the conjunctive reading in cases like (2) (see F&K21). 
Simplifying somewhat, under such IRMs the speaker starts by assigning probabilities to every possible 
message 𝑚 ∈ 𝑀, given the epistemic state they have in mind 𝑠, 𝑃(𝑚|𝑠). These are computed based on a 
naive speaker assumption:  

(3) if 𝑛 messages make 𝑠 true, then:	𝑃(𝑚|𝑠) = -1/𝑛			𝑚	makes	𝑠	true
0												otherwise

     
Then, the listener has to compare the likelihoods, 𝑃(𝑠|𝑚). Using Bayesian reasoning under the assumption 
that all prior probabilities 𝑃(𝑠) are flat, the listener instead compares 𝑃(𝑚|𝑠) for all messages. A message 
identifies a state if its conditional probability is the strict maximum compared to all other messages. The 
identification process is iterative – in each iteration the listener pairs together messages and states according 
to this criterion. After being identified, those messages and states are eliminated, and the next iteration is 
applied to the remaining messages and states. Once convergence has been reached, or if no identification 
and elimination is possible, the process ends.  IRMs and CRDs: 2 
disjuncts. The IRM above achieves the desideratum in the simple case of 2 
disjuncts: considering a 2-disjunct sentence ‘A or B’ where the possible 
epistemic states are all conjunctive combinations, the naive speaker’s 
probabilities are (3). Based on them, in the first step the listener identifies the 
alternative messages ‘A’ and ‘B’ with 𝐴 ∧ ¬𝐵 and ¬𝐴 ∧ 𝐵 respectively. After eliminating these messages 
and states, ‘A or B’ is the only remaining message, as is the state 𝐴 ∧ 𝐵, so they are necessarily paired 
together. Beyond 2 disjuncts. Van Rooij (2010), Franke (2011) and later F&K21 observe that the IRM 
fails with what appears to be a simple extension – constructions involving more than 2 disjuncts, like (5). 
Considering the 3-disjunct counterpart, ‘A or B or C’, the probabilities assigned by the naive speaker are 
as in (6). Based on these probabilities, in the first step the listener identifies the alternative messages ‘A’, 
‘B’, ‘C’ with 𝐴 ∧ ¬𝐵 ∧ ¬𝐶, ¬𝐴 ∧ 𝐵 ∧ ¬𝐶 and ¬𝐴 ∧ ¬𝐵 ∧ 𝐶 respectively. After eliminating these 
messages and states, the probabilities are as in (7). The remaining states involve tie for the first place by 
multiple messages. Hence, in the second step, no identification is possible and the procedure ends.  

𝑃(𝑚|𝑡) ‘A’ ‘B’ ‘A or B’ 
𝐴 ∧ ¬𝐵 1/2 0 1/2 
¬𝐴 ∧ 𝐵 0 1/2 1/2 
𝐴 ∧ 𝐵 1/3 1/3 1/3 

(4) 
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(5)  John is allowed to eat an apple, a banana, or cherries

F&K21 observe that this IRM fails twice: neither the full message ‘A or B or C’ nor the partial 2-way 
disjunctions identify any state. These failures are shared by all existing IRMs and attempts to fix them at 
most address the former only (van 
Rooij 2010, Franke 2011). 
F&K21 conclude that these results 
constitute an argument in favor of the 
grammatical approach over IRMs. 
IRM with weighted probabilities. 
The question underlying this work is 
whether a more nuanced IRM can 
address the challenge facing the 
existing IRMs. Specifically, it 
proposes to re-examine the assumption of a naive 
speaker in (3). Instead of a uniform distribution among 
all messages compatible with a certain state, we 
propose using weighted probabilities, which 
intuitively reflect the degree of overlap between 
messages and states rather than a binary value 
indicating only whether they are consistent or not. A 
weight of a message 𝑚 given a state 𝑠, 𝑤!(𝑚), is defined as the number of 𝑚’s deletion alternatives that 
are consistent with 𝑠, 𝐴𝑙𝑡"#$(𝑠), based on Katzir’s (2007) definition of alternatives (the other components 
remain as in the previous IRM): 
  (8) 𝑤!(𝑚) = |{𝑎 ∶ 𝑎 ∈ 𝐴𝑙𝑡"#$(𝑚) ∧ 𝑎	makes	𝑠	true}|   𝑃(𝑚|𝑠) = 𝑤!(𝑚)/Σ%∗∈'𝑤!(𝑚∗)   
In other words, the current speaker, unlike the naive speaker, prefers some messages over others to convey 
a certain state, since they have a greater overlap with this state in terms of alternatives, thus considered 
better. With this speaker, the revised IRM derives the desiderata in the 3-disjuncts case, covering both the 
2-out-of-3 and 3-out-of-3 messages. Based on the weighted probabilities in (9), in the first step ‘A’, ‘B’, 
and ‘C’ identify 𝐴 ∧ ¬𝐵 ∧ ¬𝐶,  
¬𝐴 ∧ 𝐵 ∧ ¬𝐶 and ¬𝐴 ∧ ¬𝐵 ∧ 𝐶 
(resp.). After eliminating these 
messages and states, the remaining 
probabilities are as in (10). In the 
second step, ‘A or B’, ‘B or C’, ‘A or 
C’ identify 𝐴 ∧ 𝐵 ∧ ¬𝐶, ¬𝐴 ∧ 𝐵 ∧ 𝐶 
and	 𝐴 ∧ ¬𝐵 ∧ 𝐶	 (resp.). After 
elimination, ‘A or B or C’ is the only 
remaining message, as is the state 
𝐴 ∧ 𝐵 ∧ 𝐶, so they are necessarily paired 
together. Besides 3-disjunctions, these results 
generalize to any 𝑛 ≥ 2 disjunctions, both for 𝑛-out-
of-𝑛 and 𝑘-out-of-𝑛 cases, thus significantly 
broadening the scope of the model’s success. Hence, 
the grammatical approach has no advantage over this 
IRM with respect to CRDs. Implications. The IRM 
proposed in this work eliminates F&K21’s argument against IRMs based on CRDs. It however does not 
alleviate other concerns raised for IRMs. This model is influenced by actual priors, like other IRMs, and 
therefore faces the challenges pointed out in the literature regarding prior sensitivity in SIs (e.g., F&K21, 
Cremers et al. 2023). Therefore, the present work renders IRMs a potentially viable theory of SIs, to the 
extent that other concerns for IRMs, as the one mentioned above, can be eliminated as well. 

𝑃(𝑚|𝑡) ‘A’ ‘B’ ‘C’ ‘A or B’ ‘A or C’ ‘B or C’ ‘A or B 
or C’ 

𝐴 ∧ ¬𝐵 ∧ ¬𝐶 1/4 0 0 1/4 1/4 0 1/4 
¬𝐴 ∧ 𝐵 ∧ ¬𝐶 0 1/4 0 1/4 0 1/4 1/4 
¬𝐴 ∧ ¬𝐵 ∧ 𝐶 0 0 1/4 0 1/4 1/4 1/4 
𝐴 ∧ 𝐵 ∧ ¬𝐶 1/6 1/6 0 1/6 1/6 1/6 1/6 
𝐴 ∧ ¬𝐵 ∧ 𝐶 1/6 0 1/6 1/6 1/6 1/6 1/6 
¬𝐴 ∧ 𝐵 ∧ 𝐶 0 1/6 1/6 1/6 1/6 1/6 1/6 
𝐴 ∧ 𝐵 ∧ 𝐶 1/7 1/7 1/7 1/7 1/7 1/7 1/7 

𝑃(𝑚|𝑡) ‘A or B’ ‘A or C’ ‘B or C’ ‘A or B 
or C’ 

𝐴 ∧ 𝐵 ∧ ¬𝐶 1/6 1/6 1/6 1/6 
𝐴 ∧ ¬𝐵 ∧ 𝐶 1/6 1/6 1/6 1/6 
¬𝐴 ∧ 𝐵 ∧ 𝐶 1/6 1/6 1/6 1/6 
𝐴 ∧ 𝐵 ∧ 𝐶 1/7 1/7 1/7 1/7 

𝑃(𝑚|𝑡) ‘A’ ‘B’ ‘C’ ‘A or B’ ‘A or C’ ‘B or C’ ‘A or B 
or C’ 

𝐴 ∧ ¬𝐵 ∧ ¬𝐶 1/9 0 0 2/9 2/9 0 4/9 
¬𝐴 ∧ 𝐵 ∧ ¬𝐶 0 1/9 0 2/9 0 2/9 4/9 
¬𝐴 ∧ ¬𝐵 ∧ 𝐶 0 0 1/9 0 2/9 2/9 4/9 
𝐴 ∧ 𝐵 ∧ ¬𝐶 1/15 1/15 0 1/5 2/15 2/15 2/5 
𝐴 ∧ ¬𝐵 ∧ 𝐶 1/15 0 1/15 2/15 1/5 2/15 2/5 
¬𝐴 ∧ 𝐵 ∧ 𝐶 0 1/15 1/15 2/15 2/15 1/5 2/5 
𝐴 ∧ 𝐵 ∧ 𝐶 1/19 1/19 1/19 3/19 3/19 3/19 7/19 

𝑃(𝑚|𝑡) ‘A or B’ ‘A or C’ ‘B or C’ ‘A or B 
or C’ 

𝐴 ∧ 𝐵 ∧ ¬𝐶 1/5 2/15 2/15 2/5 
𝐴 ∧ ¬𝐵 ∧ 𝐶 2/15 1/5 2/15 2/5 
¬𝐴 ∧ 𝐵 ∧ 𝐶 2/15 2/15 1/5 2/5 
𝐴 ∧ 𝐵 ∧ 𝐶 3/19 3/19 3/19 7/19 

(6) 

(7) 

(10) 

(9) 

a. ⇝ J is allowed to eat an apple    b. ⇝ J is allowed to eat a banana   c. ⇝	J is allowed to eat cherries 


